Resonant Mirković–Vilonen polytopes and formulas for highest-weight characters

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SPINON BASIS FOR (ŝl2)k INTEGRABLE HIGHEST WEIGHT MODULES AND NEW CHARACTER FORMULAS

In this note we review the spinon basis for the integrable highest weight modules of ŝl2 at levels k≥1, and give the corresponding character formula. We show that our spinon basis is intimately related to the basis proposed by Foda et al. in the principal gradation of the algebra. This gives rise to new identities for the q-dimensions of the integrable modules. (to appear in the Proceedings of ...

متن کامل

CHARACTERS OF THE IRREDUCIBLE REPRESENTATIONS WITH FUNDAMENTAL HIGHEST WEIGHT FOR THE SYMPLECTIC GROUP IN CHARACTERISTIC p

Abstract. Let K be an algebraically closed field of characteristic p > 0 and let Sp(2m) be the symplectic group of rank m over K. The main theorem of this article gives the character of the rational simple Sp(2m)-modules with fundamental highest weight as an explicit alternating sum of characters of Weyl modules. One obtains several formulae for the dimensions of these simple modules, what allo...

متن کامل

Fermionic Characters and Arbitrary Highest-weight Integrable Sl R+1 -modules

This paper contains the generalization of the Feigin-Stoyanovsky construction to all integrable sl r+1-modules. We give formulas for the q-characters of any highest-weight integrable module of sl r+1 as a linear combination of the fermionic q-characters of the fusion products of a special set of integrable modules. The coefficients in the sum are the entries of the inverse matrix of generalized...

متن کامل

Highest Weight Categories and Recollements

We provide several equivalent descriptions of a highest weight category using recollements of abelian categories. Also, we explain the connection between sequences of standard and exceptional objects.

متن کامل

Characters of Highest Weight Modules over Affine Lie Algebras Are Meromorphic Functions

We show that the characters of all highest weight modules over an affine Lie algebra with the highest weight away from the critical hyperplane are meromorphic functions in the positive half of the Cartan subalgebra, their singularities being at most simple poles at zeros of real roots. We obtain some information about these singularities. 0. Introduction 0.0.1. Let g be a simple finite-dimensio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Selecta Mathematica

سال: 2019

ISSN: 1022-1824,1420-9020

DOI: 10.1007/s00029-019-0486-7